
 

Human Action Recognition using BlazePose 

Skeleton on Spatial Temporal Graph Convolutional 

Neural Networks 

Motasem S. Alsawadi  

Department of Electronic and Electrical Engineering University 

College London 

London, UK 

motasem.alsawadi.18@ucl.ac.uk, malswadi@kacst.edu.sa

Miguel Rio 

Department of Electronic and Electrical Engineering University 

College London 

London, UK 

miguel.rio@ucl.ac.uk

Abstract—The trend in multimedia transmission in social 

media has increased tremendously during the last decade and it 

is expected to continue growing during the next. Therefore, the 

need for new tools with the capacity of analyzing this kind of 

data grows accordingly. In this work, we implement the 

BlazePose skeleton topology into the ST-GCN model for action 

recognition. We test our experiments on the UCF-101 and 

HMDB-51 datasets. These are the first experiments of action 

recognition using the BlazePose skeleton upon these 

benchmarks. Moreover, we present an improved skeleton 

topology based on BlazePose that can enhance the performance 

achieved by its predecessor. By using the Enhanced-BlazePose 

topology presented in this study, we improved the results of the 

ST-GCN model on the UCF-101 benchmark more than 13% in 

accuracy performance. Finally, we have released the BlazePose 

skeleton data of the UCF-101 and HMDB-51 from our 

experiments to contribute future studies in the research 

community. 
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I. INTRODUCTION 

According to [1], the trend in multimedia transmission in 
social media has increased tremendously during the last 
decade and the rate of growth of visual data on the internet 
surpasses the rate of development of tools to interpret the 
information. Therefore, the need for new tools with the 
capacity of analyzing this kind of data grows accordingly. 

In this study, we analyze the contents of videos by 
recognizing human actions. This approach comes with a series 
of difficulties. For instance, the capability of the model to 
represent the actions. Several proposals have been presented 
to address this issue. Among these, the point cloud-based, the 
RGB-based and the skeleton-based approaches have achieved 
the best performance [2]. The latter approach offers multiple 
advantages compared with the other alternatives. This solution 
represents the body of the person performing the action by the 
coordinates (either 2D or 3D) of a small set of landmarks 
located in the main joints of the body. Its background-free 
representation allows the classification algorithms to focus 
solely on the movement patterns of the main limbs during the 
activity. Consequently, the computational cost and the storage 
needed to model the actions is reduced considerably. For this 
reason, we chose this approach to represent the input for our 
system. 

Multiple tools have been developed to extract the skeleton- 
data from images (and videos) during the last decade. The 
OpenPose system [3] is one of the most utilized for this aim. 
This tool allows to extract the skeleton of multiple persons in 
a single image. It is a portable solution able to run on Ubuntu, 

Windows, MacOS X. However, it is recommended to be used 
on GPU-enabled devices to achieve better performance. 
Alternatively, the BlazePose system [4] is a mobile-oriented 
skeleton extraction tool released recently by Google (shown 
in Fig. 1a). It offers a lightweight solution that provides a 
greater size of skeleton joints. The vast amount of data 
acquired with this tool allows an action recognition system to 
represent more accurately the movements of the body limbs 
during the activity prior the classification stage. As 
consequence, we have chosen the BlazePose system to extract 
the skeleton data from the input videos. 

 

Fig. 1. Skeleton topologies used in this study. The four additional edges of 

the Enhanced BlazePose topology (marked in orange color) can describe 

more accurately the movements of a person. 

The second stage to achieve action recognition consists in 
the use of a classifier algorithm that can take the sequence of 
graphs as an input and provides the action performed in the 
video as an output. The most successful solutions include the 
use of Recurrent Neural Networks (RNNs) and Graph Neural 
Networks (GNNs) [5]. Given the nature of the sequence of 
graphs representation of the actions, it is intuitive to make use 
of the GNN-based solutions. To consider the relations 
between the joints inside the skeleton but also to analyze the 
patterns in the time domain, the Spatial-Temporal Graph 
Convolutional Neural Network (ST-GCN) has been proposed 
[6]. Because we intend to model the patterns in the movements 
over time, we find this model optimal for our aim. 

(a) BlazePose (b) Enhanced BlazePose 



In this work, we implement the BlazePose skeleton 
topology into the ST-GCN model for action recognition. We 
test our experiments on the UCF-101 [7] and HMDB-51 [8] 
benchmark datasets. To the knowledge of the authors, these 
are the first experiments of action recognition using the 
BlazePose skeleton upon these benchmarks. Moreover, we 
present an improved skeleton topology based on BlazePose 
(shown in Fig. 1b) that can enhance the performance achieved 
by its predecessor. In summary, the contributions of the 
present study are listed below: 

• We present the first experiments of action recognition 
using the BlazePose skeleton upon the UCF-101 [7] 
and HMDB-51 [8] benchmark datasets. 

• We present a novel skeleton topology, the Enhanced- 
BlazePose, that can capture the movements of a person 
more accurately that previous solutions. 

• We provide a deep analysis of the BlazePose model 
performance for action recognition tasks. 

• Additionally, we have released the skeleton data of the 
UCF-101 [7] and HMDB-51 [8] to contribute future 
studies in the research community 
(https://github.com/malswadi/blazepose-skeleton-
hmdb-ucf). 

II. RELATED STUDIES 

To recognize human actions, the time dimension needs to 
be considered. For this reason, there have been several 
approaches to achieve this aim. For example, Simonyan and 
Zisserman [9] proposed to extract the spatial and temporal 
information of videos to recognize human actions using a two- 
stream CNN-based architecture. However, the computation 
needed to train these architectures  is  high  compared  with 
the GNN alternatives based upon skeleton data. To alleviate 
this problem, Li et al. [10] enhanced the 3D-CNN networks 
[11] with dynamic GCNs. They represent the feature maps 
from 3D-CNNs as interconnected nodes in a graph and learn 
the spatial-temporal relationship between the nodes (i.e., the 
edges) using a GCN. With this approach, they were able to 
reduce the computational cost needed considerably. 

 

Fig. 2. Reference skeleton topologies. Each alternative has a different 

amount of joints. 

The ST-GCN model has been widely used in the recent 
years. Initially, it was used for action recognition with the use 
of the skeleton-data provided by the NTU-RGB [12] dataset 
and the Kinetics [13] dataset. This last information was 
extracted with the OpenPose system and further released by 
the authors as the Kinetics-skeleton dataset in [6]. The 
skeleton topologies provided in  the  Kinetics-skeleton  and 
the NTU-RGB datasets are shown in Fig 2a and Fig 2b, 
respectively. The availability of this large action datasets to 
the public motivated the research community to  continue with 
the improvements in this field. For instance, Shi et al. [14] 
used the Kinetics-skeleton dataset to propose a two- streamed 
architecture called 2s-AGCN (two-stream adaptive graph 
convolutional network) that is based upon the  ST- GCN 
model for action recognition. Their solution can model both 
the bone and the joint information of the skeleton in separate 
streams using an attention approach. Finally, they performed 
late fusion to classify the activity. Inspired by this idea, 
Heidari and Iosifidis [15] also used this data and utilized the 
adaptive module presented in [14] to propose the spatio- 
temporal bilinear network (ST-BLN). Recently, Plizzari et al. 
[16] proposed the Spatial–Temporal Transformer network 
(ST- TR). In their work, they used the self-attention module 
used in Transformers [17] for natural language processing 
tasks and apply it for video analysis. However, all these 
solutions altered the ST-GCN architecture. In our previous 
work, we proposed a novel set of skeleton partitioning 
strategies for the ST-GCN model that could enhance the 
recognition performance of the baseline model [18]. Our 
approach in this work is to improve the ST-GCN  model  
performance  by  changing  the  skeleton topology used as an 
input. With this solution, we aim to provide a simple and 
powerful alternative for all existing ST-GCN-based models 
improve their performance with no need of major changes in 
their architectures. 

 

Fig. 3. Flowchart for Enhanced BlazePose Topology definition 

(a) OpenPose COCO (b) NTU-RGB 



 

Fig. 4. Skeleton output comparison with the different BlazePose-based topologies. In the figure, we selected a random sample of ’Tennis Swing’ action from 

the UCF-101 dataset. The frames are presented in order of appearance from left to right. 

III. THE ENHANCED-BLAZEPOSE 

The Enhanced-BlazePose topology (shown in Fig. 1b) was 
proposed to improve the ability of the BlazePose skeleton to 
represent the actions. Since the action representation has a 
large impact on the performance of any method for action 
recognition, we decided to focus on this stage to raise the 
performance of the ST-GCN model. The proposal has four 
additional edges to the existing joints that can provide a more 
accurate representation of the relation between the head and 
the torso of the person performing the action. These new edges 
connect the joints located in the mouth edges with those 
located in the shoulders. 

The graph definition of the Enhanced-BlazePose topology 
for the ST-GCN model is described in Fig. 3. First, we set the 
initial graph topology variables. The max distance and the 
strategy variables are used to define the subsets of nodes 
where the convolution operation is going to be performed. 
Similar to the pixels of an image, these neighbor sets are used 
as an input to each convolution kernel. To reduce the 
computational load of the convolution operation, we set this 
value to 1. Meaning that we only have the center node (or the 
root node) and its direct neighbors in each subset. In the same 
stage, we define the skeleton edges. The skeleton edges 
variable is a list containing a set of tuples of two elements 
each. These elements correspond to the joint indexes of the tail 
and head of the edge of the skeleton graph. For instance, 
consider the skeleton edges elements for the nodes of the 
shoulders and hips of the BlazePose topology shown in Fig. 
1a. These elements of the skeleton edges list are (11, 12), (11, 
23), (12, 24) and (23, 24). Second, we define the skeleton 
layout name string. Third, if the topology selected corresponds 
to the Enhanced-BlazePose topology, then we add the four 
additional edges shown in Fig. 1b. Third, we initialize the 
square adjacency matrix adj matrix of size no nodes with zero 
values. For instance, the no nodes = 33 for the BlazePose 
topology. Fourth, we set to 1 the positions defined in the 
skeleton edges list of the adjacency matrix. Finally, we define 
the neighbor sets considering the adjacency matrix, the max 
distance and the strategy variables. 

IV. EXPERIMENTAL SETTINGS 

A. Preprocessing 

The  experiments on both benchmarks were conducted 
following the same procedure.  First, we extracted  the  2D 
BlazePose skeleton data from the videos.  To achieve this, we 
used the MediaPipe Pose Python API released publicly in 
[19]. This tool provides 33 landmarks of the main joint 
locations as they are shown in Fig. 1a. For our purposes, we 
utilized the x and y coordinates of the location of each joint. 
Additionally, we also considered the confidence score c of 
each joint provided by MediaPipe Pose. The values for x and 
y can vary from [0, 1] if the joint location is predicted inside 
the video frame. Otherwise, these values are outside that range 
depending on the region. On the other hand, the values for c 
strictly vary from [0, 1]. As a result, we obtained a separate 
file with the skeleton data (formatted as JSON) for each video.  

Given  that  both  benchmark  datasets  (the  UCF-101  [7] 
and HMDB-51 [8]) have videos from different sources, the 
length (and the size) of the videos vary. Thus, the third stage 
consisted of setting a fixed length to them. To follow the 
baseline model experiments settings in [6], we set the video 
lengths to be 300 frames. When the videos length did not reach 
the desired length, we repeated the initial frames the times 
needed. Alternatively, we randomly eliminated the difference 
in frames. 

B. Training 

On the fourth and final stage, we trained the ST-GCN 
model with each subset using the PyTorch framework [20] for 
deep learning. We used the spatial configuration partitioning 
to map each joint with a label in the GCN (for further details, 
please refer to [6]). We applied stochastic gradient descent 
with learning rate decay as an optimization algorithm for 80 
epochs. We decrease the learning rate value by 10% every 
10th epoch. For regularization, we used a weight decay value 
of 10−4. Finally, we vary the batch size from 32, 64 and 128. 
These experiments were performed on 4 GPUs (NVIDIA 
Tesla V100) with 32GB. 

(a) BlazePose Topology. The BlazePose model achieved a high performance to detect the skeleton of the person. 

(b) Enhanced-BlazePose Topology. Using four additional edges, the proposed topology is able to capture the movements of the head and torso more 

accurately. 



C. Evaluation 

We computed the sensitivity and accuracy metrics to 
assess the performance of the trained models. The first metric 
describes the ratio of the test set predicted as positive with 
respect to the positive ground truth labels. On the other hand, 
the accuracy describes the overall ability to classify each label 
to its corresponding class. The equation to compute the 
sensitivity metric is shown in Eq. 1. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 () 

Where TP (true positives) is the count of samples 
predicted as positive with positive ground truth label and FN 
(false negatives) is the count of samples predicted as negative 
by the model, but their ground truth label is positive. 

D. Datasets 

We test our experiments on the UCF-101 [7] and HMDB- 
51 [8] benchmark datasets: 

1) UCF-101: The UCF-101 [7] is one the most widely 

used for human action recognition. It consists of 13,320 clips 

extracted from YouTube and classified into 101 action 

classes. The length of the samples varies from 1.06 sec to 

71.04 sec and share the same resolution of 320×240 pixels. 

2) HMDB-51: The HMDB-51 [8] data consists in video 

samples gathered from YouTube, movies, Google videos, 

among others. It provides a total of 6,766 video clips of 51 

different classes. In opposite to the UCF-101 [7] counterpart, 

these videos vary their resolution. For that reason, the height 

of all the samples was scaled to 240 pixels, and the width has 

been scaled to maintain the original video ratio. 

V. RESULTS AND DISCUSSION 

Given that these are the first results of the ST-GCN model 
using the BlazePose skeleton upon the UCF-101 [7] and 
HMDB-51 [8], we compare our results in terms of accuracy 
with models that used these benchmarks for action recognition 
purposes. These models are the grouped attention graph 
convolutional networks (GAGCNs) [21] and the ST-GCN 
model with the COCO skeleton topology from OpenPose [22] 
[23] (Fig. 2a). 

 

Fig. 5. Confusion matrix with the BlazePose topology performance upon 

the UCF-101 dataset. 

1) UCF-101: Using the BlazePose topology on this 

dataset, we achieved an accuracy performance of 59.34%. 

According to their sensitivity values, the classes that achieve 

the best performance are ’tennis swing’, ’floor gymnastics’ 

and ’playing daf’. We show a random sample from the 

’tennis swing’ class in Fig. 4a. As it can be noticed, the 

BlazePose system achieved a high performance on this class 

given that the whole body of the person is shown in most of 

the frames of the videos. On the other hand, this model has 

difficulties in recognizing the actions of ’swing’, ’parallel 

bars’ and ’field hockey penalty’. We show the comparison 

of the sensitivity performance of these classes in the 

confusion matrix shown in Fig. 5. In the matrix, the ground 

truth labels and the predicted labels are shown as rows and 

columns, respectively. Since the amount of action classes in 

the UCF-101 dataset is large (101), we reduced the matrix to 

a subset that can demonstrate the sensitivity performance of 

the overall model. Therefore, we added the 10 classes that 

achieved the best results along with the 10 classes that output 

the lowest performance. The values regarding the rest of the 

classes (81 classes) are represented in the class labeled as 

’other’. 

We improved these results to 64.2% accuracy with the use 
of the Enhanced-BlazePose alternative. The classes of ’tennis 
swing’, ‘playing cello’, ’skateboarding’, ’shotput’ and ’table 
tennis shot’ were able to rise their sensitivity to 100%. In other 
words, that the model was able to predict all the samples  of  
these  classes  with  the  correct  label  using  the additional 
edges added to the BlazePose topology. As it can be noticed 
in Fig.4b, these edges allow the ST-GCN to model the rotation 
of the torso more accurately while doing the swing of the 
racket. To provide a comparison with the BlazePose topology 
output, we show the sensitivity performance using this 
topology in Fig. 6. Similar to Fig. 5, we added the 10 classes 
that achieved the best results along with the 10 classes that 
output the lowest performance, including the class ’other’. 

 

 

 

 

Fig. 6. Confusion matrix with the Enhanced BlazePose topol- ogy 

performance upon the UCF-101 dataset. 



TABLE I.  UCF-101 BENCHMARK ACCURACY PERFORMANCE 

COMPARISON 

Method Accuracy (%) 

GAGCN [21] 35.6 

OpenPose + ST-GCN [22] 50.53 

BlazePose + ST-GCN (Ours) 59.34 

Enhanced-BlazePose + ST-GCN (Ours) 64.2 

OpenPose + ST-GCN + Index Split [23] 72.31 

TABLE II.  HMDB-51 BENCHMARK ACCURACY PERFORMANCE 

COMPARISON 

Method Accuracy (%) 

GAGCN [21] 32.5 

OpenPose + ST-GCN 36.59 

BlazePose + ST-GCN (Ours) 40.07 

Enhanced-BlazePose + ST-GCN (Ours) 44.1 

OpenPose + ST-GCN + Index Split [23] 47.69 

 

The comparison with other models that used the UCF- 101 
for action recognition purposes is shown in Table I. The ST-
GCN model using an index split strategy [23] still have the 
highest accuracy for this benchmark for action recognition 
purposes. However, our main reference is ST-GCN model on 
the OpenPose COCO topology using the spatial partitioning 
strategy in [22], since the approach to achieve the action 
recognition is the most similar. By changing the skeleton 
topology used as an input from OpenPose COCO to 
BlazePose, we were able to increase almost 9% the accuracy 
performance of the ST-GCN. Moreover, we improved this 
result by almost 5% with the additional edges of the 
Enhanced- BlazePose topology. 

2) HMDB-51: Using the BlazePose topology on this 

dataset, we achieved an accuracy performance of  40.07%. 

For this model, the classes that achieve the best sensitivity 

performance are ’climb stairs’, ’clap’ and ’kiss’. Alternatively, 

the actions of ’smoke’, ’cartwheel’, ’wave’, and ’sit’ 

achieved the lowest performance. 

Similar to the results obtained upon the UCF-101 dataset, 
we improved the overall accuracy of the model to 44.1% by 
choosing the Enhanced-BlazePose topology alternative upon 
the HMDB-51 benchmark. This topology allowed the classes 
‘hug’, ‘cartwheel’ and ‘kick ball’ to increase its sensitivity by 
40%, 35.3% and 25%, respectively. 

The comparison with other models that used the HMDB-
51 for action recognition purposes is shown in Table II. 
Similarly to the results obtained on the UCF-101 dataset, we 
outper- formed the outcome achieved on the ST-GCN model 
using the OpenPose COCO with the spatial configuring 
partitioning strategy. 

After the experimentation process we found a shortcoming 
in the use of the BlazePose-based topologies for action 
recognition. Given that the BlazePose model utilizes a face 
detector to localize the person [4], it is strictly necessary for 
the face to appear in the frame to achieve a satisfactory 
outcome for action recognition. Nevertheless, these are great 
solutions to recognize actions that overcome this constraint. 

VI. CONCLUSIONS 

In this study, we present the first experiments of action 
recognition using the BlazePose skeleton upon the UCF-101 

[7] and HMDB-51 [8] benchmark datasets. We demonstrate 
that the performance of the ST-GCN model can be improved 
solely by changing the skeleton topology in its input. 
Moreover, we show that the performance can be further risen 
if the inner skeleton topology is modified, as we proposed in 
the Enhanced-BlazePose topology. Given the results provided 
in Table I and Table II, it can be noticed that it is possible to 
increase the performance of the ST-GCN model by changing 
the partitioning strategy [6] [18] used in the convolution 
operation. Therefore, we foresee this opportunity as a future 
work. 

ACKNOWLEDGMENT 

The authors acknowledge the support of King Abdulaziz 
City of Science and Technology (KACST). 

REFERENCES 

[1] Y. Chen, K. Sherren, M. Smit, and K. Y. Lee, “Using social media 
images as data in social science research,” New Media & Society, p. 
14614448211038761, 2021. 

[2] Z. Sun, Q. Ke, H. Rahmani, M. Bennamoun, G. Wang, and J. Liu, 
“Human action recognition from various data modalities: A review,” 
arXiv preprint arXiv:2012.11866, 2020. 

[3] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “OpenPose: 
Real-time Multi-Person 2D Pose Estimation Using Part Affinity 
Fields,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 43, no. 1, pp. 172–186, 2021. 

[4] V. Bazarevsky, I. Grishchenko,  K.  Raveendran,  T.  Zhu,  F.  Zhang, 
and   M.   Grundmann,   “BlazePose:   On-device   Real-time   Body 
Pose tracking,” arXiv:2006.10204, 2020. [Online]. Available: 
https://arxiv.org/abs/2006.10204 

[5] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention 
enhanced graph convolutional lstm network for skeleton-based action 
recognition,” in Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2019, pp. 1227–1236. 

[6] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional 
networks for skeleton-based action recognition,” arXiv, 2018. 

[7] K. Soomro, A. R. Zamir,  and  M.  Shah,  “UCF101:  A  dataset  of 101 
human actions classes from videos in the wild,” arXiv preprint 
arXiv:1212.0402, 2012. 

[8] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: a 
large video database for human motion recognition,” in 2011 
International conference on computer vision.   IEEE, 2011, pp. 2556–
2563. 

[9] K. Simonyan and A. Zisserman, “Two-Stream Convolutional 
Networks for Action Recognition in Videos,” Advances in Neural 
Information Processing Systems, vol. 1, Jun 2014. 

[10] J. Li, X. Liu, J. Xiao, H. Li, S. Wang, and L. Liu, “Dynamic Spatio- 
Temporal Feature Learning via Graph Convolution in 3D 
Convolutional Networks,” in 2019 International Conference on Data 
Mining Workshops (ICDMW), 2019, pp. 646–652. 

[11] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning 
spatiotemporal features with 3D convolutional networks,” Proceedings 
of the IEEE International Conference on Computer Vision, vol. 2015 
Inter, pp. 4489–4497, 2015. 

[12] A. Shahroudy, J. Liu, T. Ng, and G. Wang, “NTU RGB+D: A Large 
Scale Dataset for 3D Human Activity Analysis,” in Proceedings of the 
IEEE conference on computer vision and pattern recognition, Las 
Vegas, NV, USA, 2016, pp. 1010–1019. 

[13] W.    Kay,    J.    Carreira,    K.    Simonyan,    B.    Zhang,    C.    Hillier, 
S. Vijayanarasimhan, F. Viola, T. Green, T.  Back,  and  P.  Natsev, 
“The kinetics human action video dataset,” arXiv:1705.06950, 2017. 
[Online]. Available: https://arxiv.org/abs/1705.06950 

[14] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph 
convolutional networks for skeleton-based action recognition,” in 
Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2019, pp. 12 026–12 035. 

[15] N. Heidari and A. Iosifidis, “On the spatial attention in spatio-temporal 
graph convolutional networks for skeleton-based human action 
recognition,” in 2021 International Joint Conference on Neural 
Networks (IJCNN), Virtual, 2021, pp. 1–7. 



[16] C. Plizzari, M. Cannici, and M. Matteucci, “Spatial temporal 
transformer network for skeleton-based action recognition,” in 
International Confer- ence on Pattern Recognition.   Springer, 2021, pp. 
694–701. 

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. 
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in 
Advances in neural information processing systems, 2017, pp. 5998–
6008. 

[18] M. S. Alsawadi and M. Rio, “Skeleton split strategies for spatial 
temporal graph convolution networks,” Computers, Materials & 
Continua, vol. 71, no. 3, pp. 4643–4658, 2022. 

[19] “MediaPipe Pose.” [Online]. Available: 
https://google.github.io/mediapipe/solutions/pose 

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. 
Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation 
in pytorch,” 2017. 

[21] Y. Xu, C. Han, J. Qin, X. Xu, G. Han, and S. He, “Transductive zero-
shot action recognition via visually connected graph convolutional 
networks,” IEEE Transactions on Neural Networks and Learning 
Systems, vol. 32, no. 8, pp. 3761–3769, 2020. 

[22] W. Zheng, P. Jing, and Q. Xu, “Action Recognition Based on Spatial 
Temporal Graph Convolutional Networks,” in Proceedings of the 3rd 
International Conference on Computer Science and Application 
Engineering, 2019, pp. 1–5. 

[23] M. S. Alsawadi and M. Rio, “Skeleton-Split Framework using Spatial 
Temporal Graph Convolutional Networks for Action Recognition,” in 
2021 4th International Conference on Bio-Engineering for Smart 
Technologies (BioSMART), Paris, France, 2021, pp. 1–5. 

 


